

FOUNDRY SOLUTIONS & Metallurgical Services Inc.

Your metallurgist : francois.audet@solutionsfonderie.com

The need for advanced process control

Complete control over manufacturing process requires

Constantly monitoring changes of the production process

 Unavoidable chemistry drift in pot

Compare key measurements to predetermined tolerance windows

- Automatically alert operators before product characteristics fall out of specifications
- Allow for the planning of maintenance "on-demand", instead of maintenance "on schedule"


Our strategy

Earlier insight changes everything

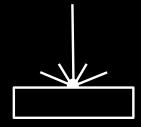
The Galvalibs is a **laser-based** analyzer that provides **online multi-element chemical monitoring** of the galvanization and the

aluminum melting processes.

The Galvalibs provides:

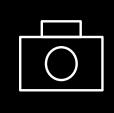
- Direct measurement of soluble phase – no phase diagram required
- Soluble fraction of Al, Fe, Mg and Si
- Tested and certified on production lines - Drift below 1% relative over 4 weeks
- Solid phase monitoring Dross
- Pot level measurement

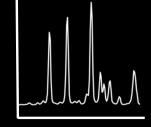
* The Galvalibs is unaffected by skimming activities or dross accumulation



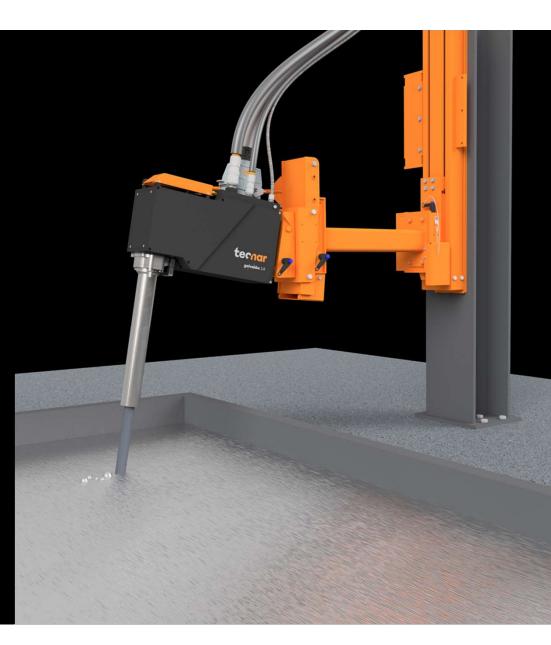
Easy plant interface

Intuitive user interface with powerful analytical tools that helps mill operators and engineers quickly understand what is going on and to reach their goal.



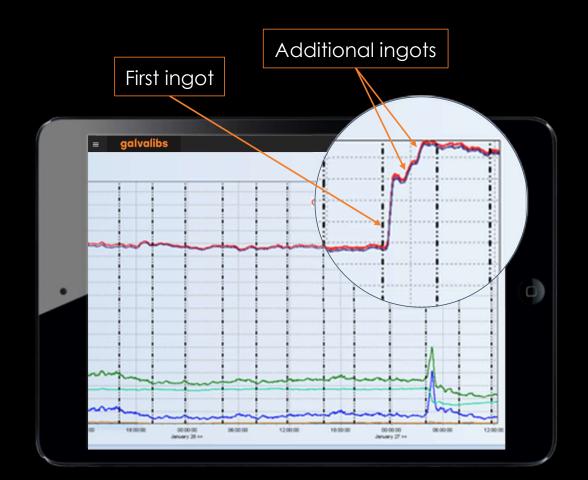

How it work

 \bigwedge

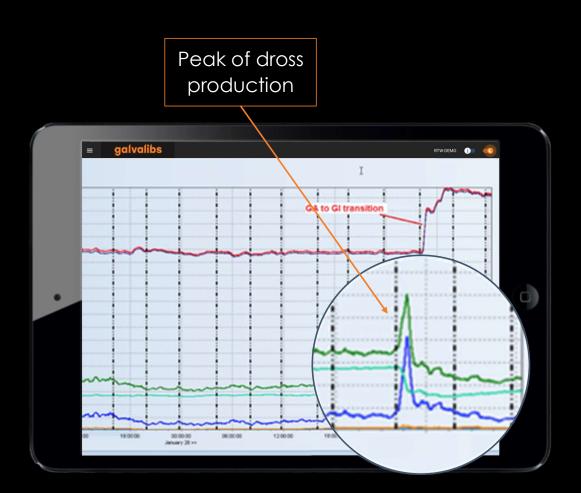


A laser pulse creates a plasma on the target and the light emitted follows the presence of elements The light emitted by the plasma is collected The collected light is delivered to a spectrometer which separates light into a spectrum A CCD camera records the separated light

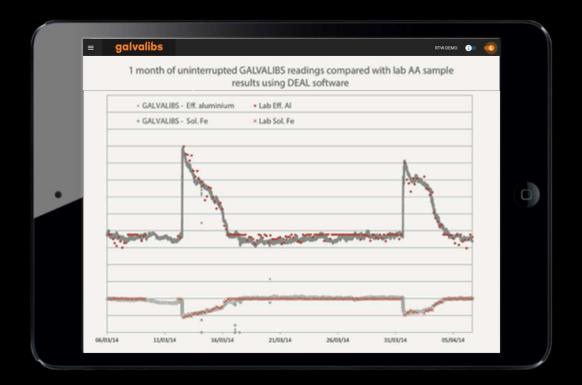
Analysis of the spectrum leads to quantitative measurement of specific elements


How does the Galvalibs works

- 1. A ceramic lance is plunged underneath the surface of the melt
- 1. An argon flow is maintained in the lance to prevent metal from rising in the lance
- The laser fires, triggering a plasma underneath the surface of the melt, inside the bubble, accessing clean molten metal
- An optical fiber collects the light emitted by the plasma and delivers it to the spectrometer


Transition from GA to GI production

- Galvalibs allows direct monitoring of transition from GA to GI production
- Real-time data shows the impact of addition of ingots in pot
 - Operator can more closely visualize what is going on with aluminum concentration


Transition from GA to GI production

- Galvalibs allows direct monitoring of transition from GA to GI production
- Real-time data shows the impact of addition of ingots in pot
 - Operator can more closely visualize what is going on with dross creation

Comparison of online Galvalibs reading with laboratory measurements

- Measurement taken over several weeks
 - Comparative data taken every 4 hours
- Laboratory analysis with atomic absorption method
- Perfect score for effective Al and Soluble Fe
- No re-calibration of Galvalibs during the complete test period
- No need for an external lab

Completely autonomous calibration

Easy to use calibration unit for monthly certification of the Galvalibs:

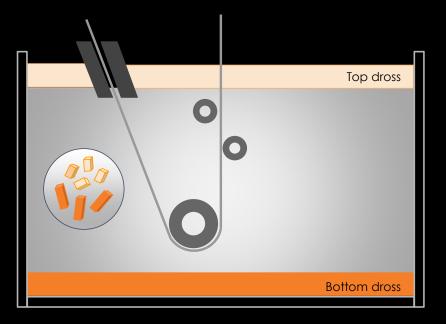
- Plug and play
- Fully automated: no human intervention, no human error

Accuracy better than 2% RSD

 Equivalent to standard laboratory equipment

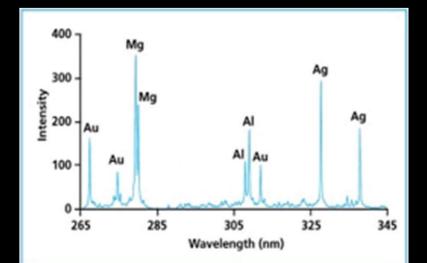
With the Galvalibs calibration unit

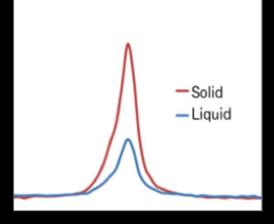
- Get rid of the external laboratory
- Provide better performance for you



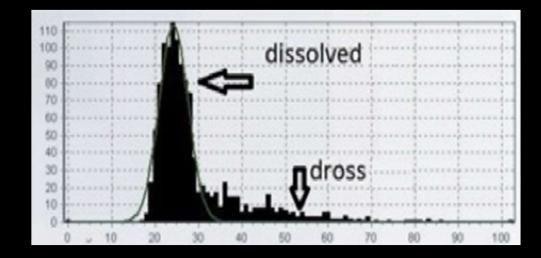
Dross is present inside the pot, that will float to surface or drop to the bottom of the pot.

> Heavy intermetallic particle moving towards the bottom Fe₂Zn₇



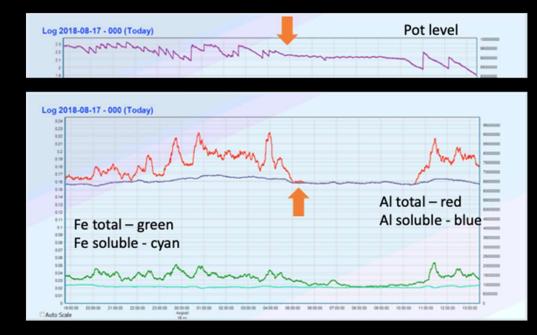

Light intermetallic particle moving towards the surface Fe₂Al_{5-x}Zn_x

Strong discrimination in optical signal from solid sample (dross) and for liquid sample (dissolved)

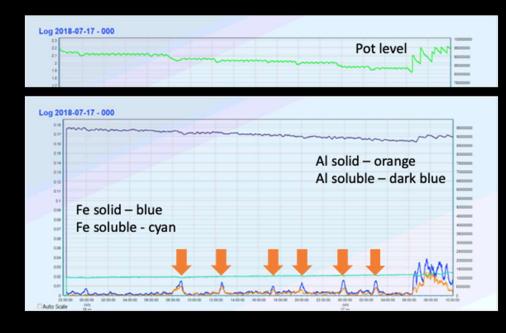


Dross will appear as signal with high intensity in the Galvalibs intensity histogram

The Galvalibs allows you to monitor the level of dross in the pot in realtime


Dross event cause by ingot additions

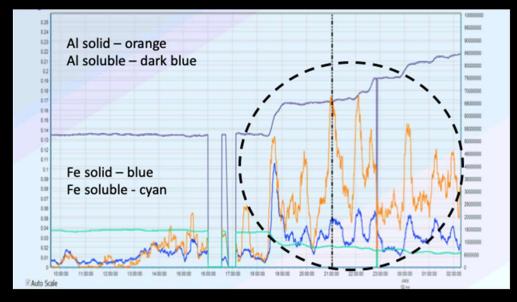
- The solid fractions of AI and Fe in pot are very sensitive to abrupt ingot additions.
- Dross appears well before the effect on soluble Al is observed.
- Suggest primary cause of the dross overshoot is not the impact of Al on the solubility of Fe but rather the thermal shock consequent to dropping an ingot in the bath.


Dross event cause by ingot additions

- As soon as the line is stopped, as seen as a flat section in the pot level reading, dross quickly floats out of the bath.
- Explaining why high quality production requires slow line speed.

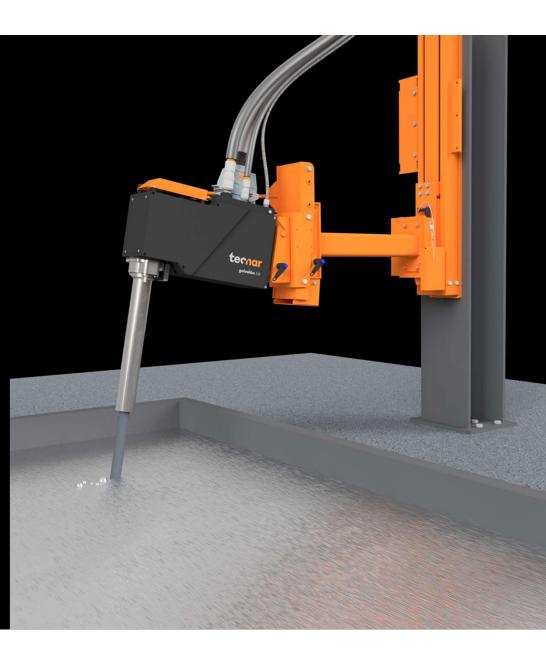
Dross caused by temperature oscillations and skimming actions during line stops

- When a line stops for a prolonged duration, the inductors are fully responsible for temperature stability.
- The pot temperature then oscillates depending on control loop of the inductors, as observed in the small oscillations in the pot level .
- Even a small temperature decrease will precipitate Al and Fe that will automatically float out (GI) or sink (GA).
- In the case where there is a source of Fe (strip in the pot, residual bottom dross, iron submerged pot equipment), this cycle will decrease the soluble Al indefinitely. In this example, Al starts at 0.176% and ends at 1.62% over 28 hours just because of this phenomenon.



1

- 1 +anadeau@tecnar.com Je veux mourir c'est trop pour moi!!!! On peux-tu couper dans les slides 20-21-22.... _Reassigned to Alexandre Nadeau_ Caroline Moisan; 2020-02-06
- 1 Pour moi aussi.... Et j'au un PhD ;-) Marc Choquet; 2020-02-06


Dross caused by aluminum composition change

- An increase in AI will induce a decrease in Fe solubility, thus precipitating a very large amount of dross in the pot.
- The amount of dross generated by such a transition is an indicator of how much bottom dross was present at the time of the transition

How does pot level measurement works

- 1. A ceramic lance is plunged underneath the surface of the melt
- 2. An argon flow is maintained in the lance to prevent metal from rising in the lance
- 3. The pressure inside the lance will change as function of the depth of the tip of the lance

How does pot level measurement works

- 4. Recording of the pressure give an accurate measurement of the depth of the lance
- 5. NO IMPACT on the measurement from the presence of dross on surface or from skimming activities
- 6. Accuracy of better than \pm 0.4 mm

Pot level control using the Galvalibs

Data from Galvalibs can be used to directly control the insertion of zinc in bath

Acquiring Initial Data.

State

e Validity

.

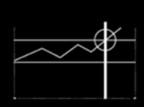
Remaining Argon (hvs)

Pot level monitoring using Galvalibs

Data from Galvalibs can be used to only monitor the insertion of zinc in bath when no active feedback is available

The key features

True real-time chemistry


- No need to wait for lab report.
- React immediately when chemistry is drifting.

Multi-element monitoring

• Wide range of elements

Dross monitoring

Bath level measurement

2

True real-time chemistry trending

AI	Mg	Si
Fe	Zn	

Multi-element monitoring

Dross monitoring

Bath level measurement

2 Je vais les mettre en high res si on décide de les garder Caroline Moisan; 2020-02-24

The key features

True real-time chemistry

Multi-element monitoring

Dross monitoring

Bath level measurement

Operator friendly interface

- Full access to all data, user selected
- Simple one—step calibration

The key features

True real-time chemistry

Multi-element monitoring

Dross monitoring

Bath level measurement

Operator friendly interface

- Full access to all data, user selected
- Simple one—step calibration
- Intuitive troubleshooting interface

Q											
System State			\$5x6us				Remaining Argon (hrs)				
	State Heasuring		Me	eurement Yaldity E-Step		See Alarm Screen for more details.	12.57	Stop			
	Calibration Set	Hes	ures	0		Hardware		See Hardware Screen for more details.	12.3/	Save Sample	
	Lest Callb	1 01/08	6/2014	14.23:18	1	Interlock	۰	See Info Screen for more details.		dere derigie	k
	Alarma Setting										
				Minimum	Current	Maximum	Com	ective Actions			
	Cabi	net Temp	•	28.50	22.80	31.50	Make	net temperature is below minimum. I sure the cabinet vortex are inactives. I sure the cabinet door is properly closed			
	Pro	be Temp	۰	33.25	36.70	36.75					
	Las	er Temp	•	35.63	36.38	29.38					
	Argo	n Pressure	•	1.19	1.31	1.30					
	Arg	jon Flow	•	0.70	0.75	1.09					
	Plase	e Intensity	•	152559.55	162618.41	168618-45					
							1	Anna State	-		

Galvalibs[™] technical specifications

Chemistry

Soluble Aluminum	0.020 wt% to 55.0 wt%
Soluble Iron	0.008 wt% to 3.0 wt%
Soluble Magnesium	0.001 wt% to 6.0 wt%
Soluble Silicon	0.001 wt% to 15.0 wt%

Chemistry accuracy

Relative standard deviation	0.5% - RSD
Relative 30-day drift	< 1%

Pot Level Measurement

Accuracy	±0.4 mm - RSD
Data acquisition rate	
Sampling rate	1 Hz
Rolling average	10 to 30 minutes

Galvalibs[™] technical specifications

Process Type	Monitored Elements	Min. typical concentration	Max. typical concentration	Middle Range Accuracy		
GI	Aluminum	0.150%	0.700%	0.002% @ 0.200%		
GI	Iron	0.080%	0.012%	0.001% @ 0.010%		
	Aluminum	0.100%	0.140%	0.0012% @ 0.120%		
GA	Iron	0.020%	0.032%	0.001% @ 0.026%		
Zinc	Aluminum	1.0%	12.0%	0.06% @ 6.5%		
Aluminum	Iron	0.01%	0.05%	0.001% @ 0.03%		
Magnesium	Magnesium	1.0%	6.0%	0.03% @ 3.5%		
Al., C:	Iron	1.0%	3.0%	0.02% @ 2%		
Alu-Si	Silicon	8.0%	12.0%	0.1% @ 10%		
	Iron	0.3%	0.7%	0.004% @ 0.5%		
Galvalume	Silicon	1.0%	1.6%	0.013% @ 1.3%		
	More elements like Titanium, Magnesium and Calcium may be measured in Galvalume. Such applications are optimized on a per client basis.					

AK Steel – Dearborn, U.S.A	1 unit – GA/GI
ArcelorMittal – Calvert, U.S.A.	1 unit – GA/GI
ArcelorMittal – Cleveland, U.S.A	1 unit – GA/GI
ArcelorMittal -2DOFASCO, Canada	1 unit – GA/GI
ArcelorMittal – Liège, Belgium	1 unit – GA/GI
ArcelorMittal Valin – VAMA, China	2 units – GA/GI/AI-Si
Baotou iron and steel – China	1 unit – GA/GI
Benxi Steel – China	1 unit – GA/GI
BNA – China	1 unit – GA/GI
Hyundai Steel – South-Korea	2 units – GA/GI
MaaSteel – China	2 units – GA/GI

2 Hamilton (Ils ont changé de nom) Marc Choquet; 2020-02-06

POSCO – <mark>3</mark> jouth-Korea	1 unit – GA/GI
Pro-tec Coating – U.S. Steel, U.S.A	2 units – GA/GI
Rizhoa Steel Co – China	1 unit – GA/GI
TAGAL Chongqing – China	1 unit – GA/GI/AI-Si
TAGAL Dalian – China	1 unit – GA/GI/Zn-Al-Mg
Tata Steel – Kalinganagar India	2 units – GA/GI/Zn-Al-Mg
Tata Steel – Liège Belgium	1 unit – GA/GI
Tata Steel – Lianwerk UK	1 unit – GA/GI
Undisclosed – Japan	2 units – GA/GI
VoestAlpine – Austria	5 units –GA/GI/Zn-Al-Mg
TOTAL	29 units

3 Pohang,

Marc Choquet; 2020-02-06